滚动接触疲劳中的白蚀裂纹
众所周知,小型、重载的长期运转轴承在失效(非常高的循环疲劳)之前会经历几个疲劳阶段。
第一阶段是振动硬化阶段,会导致微塑性变形、加工硬化,并最终积累残余应力。在振动硬化状态,轴承表面也可能发生一些微塑性变形,变形部位的粗糙表面会变平。
在振动硬化后,开始进入影响轴承寿命的主要环节,其特征是微观结构逐渐改变。在此阶段,碳化物分布由于微塑性变形而发生变化。此外,残余的奥氏体也可能逐渐减少,所有微观结构变化都伴随着残余应力的积累。
在轴承滚动接触疲劳的末期阶段,发现有暗蚀区(DER)且伴有白蚀、低角度带(LAB)和高角度带(HAB)(图4左)。虽然高角度带和低角度带也都是白蚀,但相比轴承早期失效中形成的不规则白蚀裂纹,它们有不同的外观。由此可以得出结论:不规则白蚀裂纹的形成不是滚动接触疲劳一部分。不过,这些白蚀区的微观结构在晶体结构上与过早失效中观察到的白蚀区并无很大区别。
早在20世纪60年代,就有报告指出,在滚动接触疲劳轴承中有出现白蚀裂纹和暗蚀图案。到了80年代,SKF内部也报告了这一点。对于过早失效的大中型轴承的后期研究(通过高加速寿命测试或标准耐久测试)已经证实,大范围的不规则白蚀裂纹网络的出现是轴承滚动接触疲劳的自然附带产生的结果(图4右)。
图4:左:深沟球轴承中的暗蚀区、低角度带和高角度带;右:大型圆锥滚子轴承耐久测试中出现的白蚀裂纹