全国服务热线
18018155125
0512-6883-0001

应力腐蚀开裂检测与评价技术

2021-01-06

应力腐蚀开裂检测与评价技术


发展概况

应力腐蚀开裂(SCC)是材料在应力和腐蚀环境共同作用下产生的以裂纹生长和脆性断裂为特征的一种环境敏感断裂形式,油气长输管道以外壁应力腐蚀开裂为主,裂纹常以群落的方式集中出现在某一区域,裂纹群内可能存在几十到几百个相互平行的微小裂纹。
1965年3月,美国路易斯安那州Natchitoches输气管道发生第一起SCC事故。20世纪90年代,高pH值SCC开裂机理得到业界的普遍认可,近中性pH-SCC开裂机理也得到不断发展。中国从2001年开始对埋地钢质管道的应力腐蚀开裂问题开展专项研究,对四川天然气管网、陕京输气管道、涩宁兰输气管道进行现场调查,并开展系统的实验室研究工作。
SCC从萌生到引发事故是一个非常缓慢的过程,不易被发现或检出,引发事故前,裂纹常潜伏于管体几十年。应力腐蚀开裂直接评价方法(SCCDA)包括预评价、间接检测、直接检查、后评价4步流程,通过敏感性分析及开挖调查识别、确认管道的SCC风险,建立SCC敏感段开挖选点原则(图3)。

微信截图_20210106220052.png

应力腐蚀开裂直接评价方法(SCCDA )技术流程图

在SCCDA之外,北美地区的管道运营公司开展了数千公里基于内检测的应力腐蚀裂纹检测。漏磁检测是目前比较成熟的管道内检测方法,但管道表面裂纹形态各异,增加了裂纹检测和量化难度,通过检测信号难以精确识别出裂纹,只有当外加磁场方向最大限度地与被检缺陷正交时,才能激励出最大的漏磁场。美国TDW公司开发的螺旋漏磁检测技术(SMFL),结合周向漏磁检测技术的优点及传统轴向漏磁检测技术的精度特性,在未明显增加测量节长度的情况下,能够实现对各个方向狭长裂缝的精确测量。但针对轴向裂纹、尺寸较小裂纹和其他类裂纹缺陷的漏磁检测技术有待开展深入研究。

超声波检测技术对裂纹等平面型缺陷较敏感,检测精度高,但对耦合条件要求较高。GE-PII、ROSEN、NDT等管道检测公司均拥有基于压电超声的腐蚀、裂纹检测技术。ROSEN公司研发的电磁超声裂纹检测器不需要液体耦合剂,适用于输气管道的检测,可以检测裂纹、防腐层剥离,但检测效果仍需通过工程应用加以验证。Enbridge公司的检测实践表明,管道夹杂会影响超声波信号的传播,超声检测在裂纹尺寸和深度测量方面存在一定误差,需要结合管道实际情况和开挖验证情况,对检测信号进行分析处理。

目前,中国裂纹内检测设备尚处于实验室研发和样机试验阶段,实际应用效果不理想。

应力腐蚀裂纹检测的另一个技术难点是定量化问题,超声相控阵(PAUT)是目前唯一能够检测应力腐蚀裂纹并给出定量尺寸和深度的技术,但对管道表面的耦合条件要求较高,检测效率低,只适用于开挖调查。

技术标准

国外针对埋地管道应力腐蚀开裂开展了大量的实际调查和科学研究,形成多个技术标准,包括NACE SP 0204-2008《应力腐蚀开裂直接评价方法》、ASME B31.8S-2014《输气管道系统完整性管理》、ASME STP-PT-011-2008《高后果区内天然气管道应力腐蚀开裂的完整性管理》、API RP 1160-2013《危险液体管道的完整性管理》,以及加拿大能源管道协会编制发布的《应力腐蚀开裂评价推荐作法》。这些应力腐蚀风险识别和直接评价方面的标准,主要借鉴北美地区的相关经验,受服役环境影响在中国的适用性有待验证。
目前,中国的应力腐蚀开裂检测与评价标准GB/T 36676-2018《埋地钢制管道应力腐蚀开裂(SCC)外检测方法》和SY/T 0087.4- 2016《钢质管道及储罐腐蚀评价标准 第4部分:埋地钢质管道应力腐蚀开裂直接评价》在应力腐蚀开裂敏感性分析、敏感段识别和SCC裂纹评价方面主要参照NACE SP 0204-2008。


转载请注明精川材料检测地址:www.jctest.vip

《上一页 下一页》