疲劳断裂的基本形式和特征
机械零件疲劳断裂失效形式很多:
按交变载荷的形式不同可分为:拉压疲劳、弯曲疲劳、扭转疲劳、接触疲劳、振动疲劳等; 按疲劳断裂的总周次的大小 (Nf)可分为:高周疲劳 (Nf>10⁵) 和低周疲劳 (Nf<10⁴); 按零件服役的温度及介质条件可分为:机械疲劳(常温、空气中的疲劳)、高温疲劳、低温疲劳、冷热疲劳及腐蚀疲劳等。
但其基本形式只有两种,即由切应力引起的切断疲劳及由正应力引起的正断疲劳。其它形式的疲劳断裂,都是由这两种基本形式在不同条件下的复合。
(1) 切断疲劳失效
切断疲劳初始裂纹是由切应力引起的。切应力引起疲劳初裂纹萌生的力学条件是:切应力/缺口切断强度≥1;正应力/缺口正断强度<1。
切断疲劳的特点:疲劳裂纹起源处的应力应变场为平面应力状态;初裂纹的所在平面与应力轴约成45º角,并沿其滑移面扩展。
由于面心立方结构的单相金属材料的切断强度一般略低于正断强度,而在单向压缩、拉伸及扭转条件下,最大切应力和最大正应力的比值(即软性系数)分别为2.0、0.5、0.8,所以对于这类材料,其零件的表层比较容易满足上述力学条件,因而多以切断形式破坏。例如铝、镍、铜及其合金的疲劳初裂纹,绝大多数以这种方式形成和扩展。低强度高塑性材料制作的中小型及薄壁零件、大应力振幅、高的加载频率及较高的温度条件,都将有利于这种破坏形式的产生。
(2) 正断疲劳失效
正断疲劳的初裂纹,是由正应力引起的。初裂纹产生的力学条件是:正应力/缺口正断强度≥1,切应力/缺口切断强度<1。
正断疲劳的特点:疲劳裂纹起源处的应力应变场为平面应变状态;初裂纹所在平面大致上与应力轴相垂直,裂纹沿非结晶学平面或不严格地沿着结晶学平面扩展。
大多数的工程金属构件的疲劳失效都是以此种形式进行的。特别是体心立方金属及其合金以这种形式破坏的所占比例更大;上述力学条件在试件的内部裂纹处容易得到满足,但当表面加工比较粗糙或具有较深的缺口、刀痕、蚀坑、微裂纹等应力集中现象时,正断疲劳裂纹也易在表面产生。高强度、低塑性的材料、大截面零件、小应力振幅、低的加载频率及腐蚀、低温条件均有利于正断疲劳裂纹的萌生与扩展。
金属零件在使用中发生的疲劳断裂具有突发性、高度局部性及对各种缺陷的敏感性等特点。引起疲劳断裂的应力一般很低,断口上经常可观察到特殊的、反映断裂各阶段宏观及微观过程的特殊花样。
(1) 疲劳断裂的突发性
疲劳断裂虽然经过疲劳裂纹的萌生、亚临界扩展、失稳扩展三个元过程,但是由于断裂前无明显的塑性变形和其它明显征兆,所以断裂具有很强的突发性。即使在静拉伸条件下具有大量塑性变形的塑性材料,在交变应力作用下也会显示出宏观脆性的断裂特征,因而断裂是突然进行的。
(2) 疲劳断裂应力很低
循环应力中最大应为幅值一般远低于材料的强度极限和屈服极限。例如,对于旋转弯曲疲劳来说,经10⁷次应力循环破断的应力仅为静弯曲应为的20~40%;对于对称拉压疲劳来说,疲劳破坏的应力水平还要更低一些。对于钢制构件,在工程设计中采用的近似计算公式为:
(3) 疲劳断裂是一个损伤积累的过程
疲劳断裂不是立即发生的,往往经过很长的时间才完成。疲劳初裂纹的萌生与扩展均是多次应力循环损伤积累的结果。
在工程上,通常把试件上产生一条可见的初裂纹的应力循环周次 (N0)或将N0 与试件的总寿命Nf 的比值 (N0/Nf ) 作为表征材料疲劳裂纹萌生孕育期的参量。疲劳裂纹萌生的孕育期与应力幅的大小、试件的形状及应力集中状况、材料性质、温度与介质等因素有关。
(4) 疲劳断裂对材料缺陷的敏感性
金属的疲劳失较具有对材料的各种缺陷均为敏感的特点。因为疲劳断裂总是起源于微裂纹处。这些微裂纹有的是材料本身的冶金缺陷,有的是加工制造过程中留下的,有的则是使用过程中产生的。
部分材料的N0/Nf值
各因素对N0/Nf值影响的趋势
(5) 疲劳断裂对腐蚀介质的敏感性
金属材料的疲劳断裂除取决于材料本身的性能外,还与零件运行的环境条件有着密切的关系。对材料敏感的环境条件虽然对材料的静强度也有一定的影响,但其影响程度远不如对材料疲劳强度的影响来得显著。大量实验数据表明,在腐蚀环境下材料的疲劳极限较在大气条件下低得多,甚至就没有所说的疲劳极限。